
Category - Senior

Dear Learner

Greetings.

I.T. Olympiad has gone from pillar to post in last few years.
Thousands of students of all state boards, CBSE, CISCE and
International Boards are appearing in this online championship ever
year.

The objective of this competition is to encourage the students towards
computing at an early age. Fortunately Indian schools are giving
good stress on computer education in their curriculums and the
results of such motivation are also visible; however, the awareness of
Free and Open source computing philosophy is not much discussed in
India at the school level.

In It's National Policy on ICT in School education 2012, Govt. of
India clearly mention the policy goal is to promote universal,
equitable, open and free access to a state of the art ICT and ICT-
enabled tools and resource to all the students and teachers. Under
section 6.3 Software paragraphs 6.3.1 it clearly mentions Free and
Open Source Software- Operating System and software application
will be preferred in order to expand the range of learning, creation,
and sharing.

Keeping the above objective in mind this new curriculum of IT
Olympiad Cubs(Junior Category) has lessons on FOSS based
Operating System Ubuntu, GIMP, Email Introduction, Blogging,
accessing various E-Services and some of the most popular open
source applications which students can use freely. We hope that
students will be full of new ideas and skills after mastering the topics
presented in this book.

Please feel free to share your feedback with us.

With best wishes

Prof. Dr. R. V. Aacharya & Team of IT Olympiad

MESSAGE

1

TABLE OF CONTENTS

Sr.No. Particulars

Indian IT Industry

History of Software

The Copyright and Proprietary Software Business

Why proprietary software are a Danger

EULA : The agreement which kills freedom

Introduction of Free Software

Why Software Should Be Free?

Free Software and Education

Why schools should use Free software?

The GNU License

The Open Source Philosophy

The Copyleft Theory

List of Free Software/FOSS for Education

Linux an Ultimate HERO

What is Linux

Why Linux

Companies uses Linux

Linux Vs MAC OS

Bharat Operating System Solutions (BOSS Linux)

Apache Openoffice : A free office publishing tool for all

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 1.Indian IT Industry

One of the faster growing sector of today's India is IT. According to

wikipedia on IT Industry in India- Information Technology in India is

an industry comprising of two noteworthy segments,

IT administrations(services) and business process outsourcing

(BPO). The area has expanded its commitment to India's GDP from

1.2% in 1998 to 7.5% in 2012. According to NASSCOM, the sector

aggregated revenues of US$147 billion in 2015, where export

revenue stood at US$99 billion and domestic at US$48 billion,

growing by over 13%.

India's present leader Narendra Modi has begun 'The Digital India'

venture with a vision to transform India into a digitally empowered

society and knowledge economy.

How it started:

Shri V. Rajaraman IIT Bangalore mentions in his paper 'HISTORY

OF COMPUTING IN INDIA' that The computer age in India started

in 1955 with the establishment of HEC‐2M (a computer designed by

A.D.Booth in England) at the Indian Statistical Institute (ISI) at

Calcutta (now Kolkata). That year a group headed by R.Narasimhan

began planning and creating a computer at the Tata Institute of

Fundamental Research (TIFR) at Bombay (now Mumbai) 2000 km

away on the west bank of India. In 1955 just a couple of dozen

researchers and specialists in India thought about computers.

2

It was nothing more than a number crunching machine and was huge

in size. The dimensions of this machine were 10 ft in length, 7 ft in

breadth and 6 ft in height. It played a critical role in formulating

annual and five-year plans by the planning commission, and in top-

secret projects of India's nuclear program. Moreover, it went on to

turn out India's first generation of computer professionals. It was at

least ten thousand times slower in solving even simple problems than

today's machines. But it set the stage for the development of

computers in India.

The HEC-2M also played a pivotal role in the statistical data

processing that formed the bedrock of the five-year plans. India's

weather forecasting model, too, based on statistical analysis of

meteorological data, was developed on it. Most importantly, the same

machine was used to design the next generation of computers,

including India's first indigenous computer, the 'TIFRAC' (or Tata

Institute of Fundamental Research Automatic Computer), in 1962.

From that point in time, today India has come a long way. Today

almost every office desk in India has a PC and government's IT

policies shows its sincere efforts to reach out to every village in the

country. For a nation like India which is geographically big and

culturally and linguistically so varied, computer technology has

proved to be a great tool of overall development. Successful efforts

are made at government as well as non-government level to use this

technology for the benefit of the Indian society.

* * *
Exercise : A) Prepare a note on the history of I.T. Industry

world wide.

 B) Collect the latest figure and data showing the

progress of India IT Industry in past to years.

3

 2. History of Software

An interesting story of software development:

Software Programming (development) can be defined as

programmed instructions stored in the memory of stored-program

digital computers for execution by the processor. The design for what

would have been the first piece of software was written by Ada

Lovelace in the 19th century.

Birth of “Software” and the Interactive Minicomputer

According to Jeffery R. Yost, the term “software” was created in the

late 1950s and was soon adopted throughout the industry (2005).

Coined by statistician John Tukey, the term became a catchall, user-

friendly term for the work of computer programmers who were using

terminology ranging from “computer program” to “code.”

The America Heritage New Dictionary of Cultural Literacy describes

software as “the programs and instructions that run a computer, as

opposed to the actual physical machinery and devices that compose

the hardware.” Meanwhile, The Free On-Line Dictionary of

Computing adds that software is divided into two primary types:

system software and program applications.

System software includes general program execution processes such

as compilers and, most recognizably, the disk operating system

(DOS), which has evolved in form in IBM PC-style computers within

4

the last two decades from the ubiquitous Microsoft DOS prompt

(MS-DOS) to stylish Windows-based platforms from Microsoft 2000

to Windows Vista.

Similarly, Apple has seen countless new releases from the Apple

DOS 3.1 of 1977 to the OS X series of recent years. Program

applications include everything else, from gaming to multimedia to

scientific applications. Finally, software combines lines of source

code written by humans with the work of compilers and assemblers in

executing machine code (Info Source : Dictionary.com).

As a profession, software development has its roots in the 1960s.

Today software development business run on the quality of its

development which mainly consist various components such as its

maintenance, stability, speed, testing, readability, size, cost, security

and number of issues or 'bugs' etc.

* * *

5

 3. The Copyright and Proprietary
 Software Business

The world's first copyright law was the Statute of Anne, ordered in

England in 1710. This Act presented surprisingly the idea of the

creator of a work being the proprietor of its copyright, and laid out

settled terms of assurance. Taking after this Act, copyrighted works

were required to be kept at particular copyright libraries, and enlisted

at Stationers' Hall. There was no automatic copyright security for

unpublished works.

The software Copyright

Computer software was one of the first electronic information

technology products that penetrated the domain of intellectual

property.

There was little requirement for copyright (or patent) security for

early computer programs. There were couple of computers, and most

programming was exceptionally produced for in-house applications.

It wasn't until the early 1960s that computer programs were being

actively marketed by a software industry besides the computer

manufacturers. Before broadly promoted programming, it was

anything but difficult to ensure by an agreement or permit

understanding any computer program that was being showcased.

6

United States practice

According to Wikipedia, Copyright protection attaches to “original

works of authorship fixed in any tangible medium of expression, now

known or later developed, from which they can be perceived,

reproduced, or otherwise communicated, either directly or with the

aid of a machine or device.”17 U.S.C.A. § 102. Copyright functions

by granting the author the right to exclude others. Copyright protects:

· literary works

· musical works (& accompanying words)

· dramatic works (& accompanying music)

· pantomimes and choreographed works

· pictorial, graphic, & sculptural works

· motion pictures & other audiovisual works

· sound recordings

· architectural works

+ compilations and derivative works – 17 USC § 103(a).
In the United States, computer programs are literary works, under the

definition in the Copyright Act, 17 U.S.C. § 101.

Indian Copyright Policies: According to Govt. of India's copyright

definiation mentioned on its official website http://copyright.gov.in -

“Copyright is a right given by the law to creators of literary, dramatic,

musical and artistic works and producers of cinematograph films and

sound recordings. In fact, it is a bundle of rights including, inter alia,

rights of reproduction, communication to the public, adaptation and

translation of the work. There could be slight variations in the

composition of the rights depending on the work.

Copyright ensures certain minimum safeguards of the rights of

7

authors over their creations, thereby protecting and rewarding

creativity. Creativity being the keystone of progress, no civilized

society can afford to ignore the basic requirement of encouraging the

same. Economic and social development of a society is dependent on

creativity. The protection provided by copyright to the efforts of

writers, artists, designers, dramatists, musicians, architects and

producers of sound recordings, cinematograph films and computer

software, creates an atmosphere conducive to creativity, which

induces them to create more and motivates others to create.”

The copyright in India has travelled a long way since it was

introduced during the British rule. The first law on copyright was

enacted in the year 1847 by the then Governor General of India.

When Copyright Act 1911 came into existence in England, it became

automatically applicable to India, being India an

integral part of British Raj. This act was in force in the country until

after independence when a new copyright act (the Act of 1957) came

into effect in 1958. Thereafter the Act has undergone many

amendments. The latest in the series is the 1994 Amendment, which

came into force in May 1995.

Proprietary software

Proprietary software as described by Wikipedia is computer software

for which the software's publisher or another person retains

intellectual property rights—usually copyright of the source code,

but sometimes patent rights.

Examples of proprietary software include Microsoft Windows,

Adobe Flash Player, PS3 OS, iTunes, Adobe Photoshop, Google

Earth, Mac OS X, Skype, WinRAR, Oracle's version of Java and

8

some versions of Unix.

Software distributions considered as proprietary may in fact

incorporate a "mixed source" model including both free and non-free
]

software in the same distribution. Most if not all so-called

proprietary UNIX distributions are mixed source software, bundling

open-source components like BIND, Sendmail, X Window System,

DHCP, and others along with a purely proprietary kernel and system

utilities

* * *

9

 4. End-user license agreement (EULA)

As mentioned in Wikipedia, In proprietary software, an end-user

license agreement (EULA) or software license agreement is the

contract between the licensor and purchaser, establishing the

purchaser's right to use the software. The license may define ways

under which the copy can be used, in addition to the automatic rights

of the buyer including the first sale doctrine and 17 U.S.C. § 117

(freedom to use, archive, re-sale, and backup).

Many form contracts are only contained in digital form, and only

presented to a user as a click-through where the user must "accept".

As the user may not see the agreement until after he or she has already

purchased the software, these documents may be contracts of

adhesion.

Software companies often make special agreements with large

businesses and government entities that include support contracts

and specially drafted warranties. Some end-user license agreements

accompany shrink-wrapped software that is presented to a user

sometimes on paper or more usually electronically, during the

installation procedure. The user has the choice of accepting or

rejecting the agreement. The installation of the software is

conditional to the user clicking a button labelled "accept".

Many EULAs assert extensive liability limitations. Most commonly,

an EULA will attempt to hold harmless the software licensor in the

event that the software causes damage to the user's computer or data,

10

but some software also proposes limitations on whether the licensor

can be held liable for damage that arises through improper use of the

software (for example, incorrectly using tax preparation software and

incurring penalties as a result).

One case upholding such limitations on consequential damages is

M.A. Mortenson Co. v. Timberline Software Corp., et al. Some

EULAs also claim restrictions on venue and applicable law in the

event that a legal dispute arises.

Some copyright owners use EULAs in an effort to circumvent

limitations the applicable copyright law places on their copyrights

(such as the limitations in sections 107–122 of the United States

Copyright Act), or to expand the scope of control over the work into

areas for which copyright protection is denied by law (such as

attempting to charge for, regulate or prevent private performances of

a work beyond a certain number of performances or beyond a certain

period of time).

Such EULAs are, in essence, efforts to gain control, by contract, over

matters upon which copyright law precludes control. This kind of

EULAs concurs in aim with DRM and both may be used as alternate

methods for widening control over software. In disputes of this nature

in the United States, cases are often appealed and different circuit

courts of appeal sometimes disagree about these clauses. This

provides an opportunity for the U.S. Supreme Court to intervene,

which it has usually done in a scope-limited and cautious manner,

providing little in the way of precedent or settled law.

Criticism

One common criticism of end-user license agreements is that they are

often far too lengthy for users to devote the time to thoroughly read

11

them. In March 2012, the PayPal end-user license agreement was

36,275 words long and in May 2011 the iTunes agreement was 56

pages long. News sources reporting these findings asserted that the

vast majority of users do not read the documents because of their

length.

Several companies have parodied this belief that users do not read the

end-user-license agreements by adding unusual clauses, knowing

that few users will ever read them. As an April Fool's Day joke,

Gamestation added a clause stating that users who placed an order on

April 1, 2010 agreed to irrevocably give their soul to the company,

which 7,500 users agreed to.

Although there was a checkbox to exempt out of the "immortal soul"

clause, few users checked it and thus Gamestation concluded that

88% of their users did not read the agreement.The program PC

Pitstop included a clause in their end-user license agreement stating

that anybody who read the clause and contacted the company would

receive a monetary reward, but it took four months and over 3,000

software downloads before anybody collected it. During the

installation of version 4 of the Advanced Query Tool the installer

measured the elapsed time between the appearance and the

acceptance of the end-user license agreements to calculate the

average reading speed. If the agreements were accepted fast enough a

dialog window “congratulated” the users to their absurdly high

reading speed of several hundred words per second. South Park

parodied this in the episode "HumancentiPad", where Kyle had

neglected to read the terms of service for his last iTunes update and

therefore inadvertently agreed to have Apple employees experiment

upon him.

End-user license agreements have also been criticized for containing

12

terms that impose onerous obligations on consumers. For example,

Clickwrapped, a service that rates consumer companies according to

how well they respect the rights of users, reports that they

increasingly include a term that prevents a user from suing the

company in court.

* * *

Exercise : A) Try to go through the end user license Agreement of

Windows X Par8 and prepare a summary of the

agreement

 B) Compare EULA with GNU-GPL license.

13

 5. Introduction of Free Software

The Free Software Definition

As mentioned on Free Software

Foundation, Inc. page www.gnu.org
The free software definition presents the

criteria for whether a particular software

program qualifies as free software. From

time to time we revise this definition, to

clarify it or to resolve questions about subtle issues.

“Free software” means software that respects users' freedom and

community. Roughly, it means that the users have the freedom to

run, copy, distribute, study, change and improve the software.

Thus, “free software” is a matter of liberty, not price. To understand

the concept, you should think of “free” as in “free speech,” not as in

“free milk”. We sometimes call it “libre software,” borrowing the

French or Spanish word for “free” as in freedom, to show we do not

mean the software is gratis.

We campaign for these freedoms because everyone deserves them.

With these freedoms, the users (both individually and collectively)

14

control the program and what it does for them. When users don't

control the program, we call it a “nonfree” or “proprietary” program.

The nonfree program controls the users, and the developer controls

the program; this makes the program an instrument of unjust power.

The four essential freedoms

A program is free software if the program's users have the four

essential freedoms:

· The freedom to run the program as you wish, for any purpose
(freedom 0).

· The freedom to study how the program works, and change it so it
does your computing as you wish (freedom 1). Access to the
source code is a precondition for this.

· The freedom to redistribute copies so you can help your neighbor
(freedom 2).

· The freedom to distribute copies of your modified versions to
others (freedom 3). By doing this you can give the whole
community a chance to benefit from your changes. Access to the
source code is a precondition for this.

A program is free software if it gives users adequately all of these

freedoms. Otherwise, it is nonfree. While we can distinguish various

nonfree distribution schemes in terms of how far they fall short of

being free, we consider them all equally unethical. In any given

scenario, these freedoms must apply to whatever code we plan to

make use of, or lead others to make use of.

For instance, consider a program A which automatically launches a

program B to handle some cases. If we plan to distribute A as it stands,

that implies users will need B, so we need to judge whether both A and

B are free. However, if we plan to modify A so that it doesn't use B,

only A needs to be free; B is not pertinent to that plan.

“Free software” does not mean “noncommercial”. A free program

15

must be available for commercial use, commercial development, and

commercial distribution. Commercial development of free software

is no longer unusual; such free commercial software is very

important. You may have paid money to get copies of free software,

or you may have obtained copies at no charge. But regardless of how

you got your copies, you always have the freedom to copy and change

the software, even to sell copies.
The rest of this page clarifies certain points about what makes

specific freedoms adequate or not.

The freedom to run the program as you wish

The freedom to run the program means the freedom for any kind of

person or organization to use it on any kind of computer system, for

any kind of overall job and purpose, without being required to

communicate about it with the developer or any other specific entity.

In this freedom, it is the user's purpose that matters, not the

developer's purpose; you as a user are free to run the program for your

purposes, and if you distribute it to someone else, she is then free to

run it for her purposes, but you are not entitled to impose your

purposes on her.

The freedom to run the program as you wish means that you are not

forbidden or stopped from doing so. It has nothing to do with what

functionality the program has, or whether it is useful for what you

want to do.

The freedom to study the source code and make changes

In order for freedoms 1 and 3 (the freedom to make changes and the

freedom to publish the changed versions) to be meaningful, you must

have access to the source code of the program. Therefore,

accessibility of source code is a necessary condition for free software.

16

Obfuscated “source code” is not real source code and does not count

as source code.

Freedom 1 includes the freedom to use your changed version in place

of the original. If the program is delivered in a product designed to run

someone else's modified versions but refuse to run yours — a practice

known as “tivoization” or “lockdown”, or (in its practitioners'

perverse terminology) as “secure boot” — freedom 1 becomes an

empty pretense rather than a practical reality. These binaries are not

free software even if the source code they are compiled from is free.

One important way to modify a program is by merging in available

free subroutines and modules. If the program's license says that you

cannot merge in a suitably licensed existing module — for instance, if

it requires you to be the copyright holder of any code you add — then

the license is too restrictive to qualify as free.

Whether a change constitutes an improvement is a subjective matter.

If your right to modify a program is limited, in substance, to changes

that someone else considers an improvement, that program is not

free.

The freedom to redistribute if you wish: basic requirements

Freedom to distribute (freedoms 2 and 3) means you are free to

redistribute copies, either with or without modifications, either gratis

or charging a fee for distribution, to anyone anywhere. Being free to

do these things means (among other things) that you do not have to

ask or pay for permission to do so.

You should also have the freedom to make modifications and use

them privately in your own work or play, without even mentioning

that they exist. If you do publish your changes, you should not be

required to notify anyone in particular, or in any particular way.
17

Freedom 3 includes the freedom to release your modified versions as

free software.

 A free license may also permit other ways of releasing them; in other

words, it does not have to be a copyleft license. However, a license

that requires modified versions to be nonfree does not qualify as a

free license.

The freedom to redistribute copies must include binary or executable

forms of the program, as well as source code, for both modified and

unmodified versions. (Distributing programs in runnable form is

necessary for conveniently installable free operating systems.) It is

OK if there is no way to produce a binary or executable form for a

certain program (since some languages don't support that feature),

but you must have the freedom to redistribute such forms should you

find or develop a way to make them.

Contract-based licenses

Most free software licenses are based on copyright, and there are

limits on what kinds of requirements can be imposed through

copyright. If a copyright-based license respects freedom in the ways

described above, it is unlikely to have some other sort of problem that

we never anticipated (though this does happen occasionally).

However, some free software licenses are based on contracts, and

contracts can impose a much larger range of possible restrictions.

That means there are many possible ways such a license could be

unacceptably restrictive and nonfree.

We can't possibly list all the ways that might happen. If a contract-
based license restricts the user in an unusual way that copyright-
based licenses cannot, and which isn't mentioned here as legitimate,
we will have to think about it, and we will probably conclude it is
nonfree.

18

Why Software Should Be Free : An essay by Richard Stallman
Introduction

The existence of software inevitably raises the

question of how decisions about its use should

be made. For example, suppose one individual

who has a copy of a program meets another

who would like a copy. It is possible for them to

copy the program; who should decide whether this is done? The

individuals involved? Or another party, called the “owner”?

Software developers typically consider these questions on the

assumption that the criterion for the answer is to maximize

developers' profits. The political power of business has led to the

government adoption of both this criterion and the answer proposed

by the developers: that the program has an owner, typically a

corporation associated with its development.

I would like to consider the same question using a different criterion:

the prosperity and freedom of the public in general.

This answer cannot be decided by current law—the law should

conform to ethics, not the other way around. Nor does current

practice decide this question, although it may suggest possible

answers. The only way to judge is to see who is helped and who is hurt

by recognizing owners of software, why, and how much. In other

words, we should perform a cost-benefit analysis on behalf of society

as a whole, taking account of individual freedom as well as

production of material goods.

In this essay, I will describe the effects of having owners, and show

that the results are detrimental. My conclusion is that programmers
19

have the duty to encourage others to share, redistribute, study, and

improve the software we write: in other words, to write “free”

software.(1)

How Owners Justify Their Power

Those who benefit from the current system where programs are

property offer two arguments in support of their claims to own

programs: the emotional argument and the economic argument.

The emotional argument goes like this: “I put my sweat, my heart, my

soul into this program. It comes from me, it's mine!”

This argument does not require serious refutation. The feeling of

attachment is one that programmers can cultivate when it suits them;

it is not inevitable. Consider, for example, how willingly the same

programmers usually sign over all rights to a large corporation for a

salary; the emotional attachment mysteriously vanishes.

By contrast, consider the great artists and artisans of medieval times,

who didn't even sign their names to their work. To them, the name of

the artist was not important. What mattered was that the work was

done—and the purpose it would serve. This view prevailed for

hundreds of years.

The economic argument goes like this: “I want to get rich (usually

described inaccurately as 'making a living'), and if you don't allow me

to get rich by programming, then I won't program. Everyone else is

like me, so nobody will ever program. And then you'll be stuck with

no programs at all!” This threat is usually veiled as friendly advice

from the wise.

I'll explain later why this threat is a bluff. First I want to address an

implicit assumption that is more visible in another formulation of the

argument.
20

This formulation starts by comparing the social utility of a

proprietary program with that of no program, and then concludes that

proprietary software development is, on the whole, beneficial, and

should be encouraged. The fallacy here is in comparing only two

outcomes—proprietary software versus no software—and assuming

there are no other possibilities.

Given a system of software copyright, software development is

usually linked with the existence of an owner who controls the

software's use. As long as this linkage exists, we are often faced with

the choice of proprietary software or none. However, this linkage is

not inherent or inevitable; it is a consequence of the specific

social/legal policy decision that we are questioning: the decision to

have owners. To formulate the choice as between proprietary

software versus no software is begging the question.

The Argument against Having Owners

The question at hand is, “Should development of software be linked

with having owners to restrict the use of it?”

In order to decide this, we have to judge the effect on society of each

of those two activities independently: the effect of developing the

software (regardless of its terms of distribution), and the effect of

restricting its use (assuming the software has been developed). If one

of these activities is helpful and the other is harmful, we would be

better off dropping the linkage and doing only the helpful one.

To put it another way, if restricting the distribution of a program

already developed is harmful to society overall, then an ethical

software developer will reject the option of doing so.

21

To determine the effect of restricting sharing, we need to compare the

value to society of a restricted (i.e., proprietary) program with that of

the same program, available to everyone. This means comparing two

possible worlds.

This analysis also addresses the simple counter argument sometimes

made that “the benefit to the neighbor of giving him or her a copy of a

program is cancelled by the harm done to the owner.” This counter

argument assumes that the harm and the benefit are equal in

magnitude. The analysis involves comparing these magnitudes, and

shows that the benefit is much greater.

To elucidate this argument, let's apply it in another area: road

construction.

It would be possible to fund the construction of all roads with tolls.

This would entail having toll booths at all street corners. Such a

system would provide a great incentive to improve roads. It would

also have the virtue of causing the users of any given road to pay for

that road. However, a toll booth is an artificial obstruction to smooth

driving—artificial, because it is not a consequence of how roads or

cars work.

Comparing free roads and toll roads by their usefulness, we find that

(all else being equal) roads without toll booths are cheaper to

construct, cheaper to run, safer, and more efficient to use. In a poor

country, tolls may make the roads unavailable to many citizens. The

roads without toll booths thus offer more benefit to society at less

cost; they are preferable for society. Therefore, society should choose

to fund roads in another way, not by means of toll booths. Use of

roads, once built, should be free.

When the advocates of toll booths propose them as merely a way of

22

raising funds, they distort the choice that is available. Toll booths do

raise funds, but they do something else as well: in effect, they degrade

the road. The toll road is not as good as the free road; giving us more

or technically superior roads may not be an improvement if this

means substituting toll roads for free roads. Of course, the

construction of a free road does cost money, which the public must

somehow pay. However, this does not imply the inevitability of toll

booths. We who must in either case pay will get more value for our

money by buying a free road.
I am not saying that a toll road is worse than no road at all. That would

be true if the toll were so great that hardly anyone used the road—but

this is an unlikely policy for a toll collector. However, as long as the

toll booths cause significant waste and inconvenience, it is better to

raise the funds in a less obstructive fashion.

To apply the same argument to software development, I will now

show that having “toll booths” for useful software programs costs

society dearly: it makes the programs more expensive to construct,

more expensive to distribute, and less satisfying and efficient to use.

It will follow that program construction should be encouraged in

some other way. Then I will go on to explain other methods of

encouraging and (to the extent actually necessary) funding software

development.

The Harm Done by Obstructing Software

Consider for a moment that a program has been developed, and any

necessary payments for its development have been made; now

society must choose either to make it proprietary or allow free sharing

and use. Assume that the existence of the program and its availability

is a desirable thing.

23

Restrictions on the distribution and modification of the program

cannot facilitate its use. They can only interfere. So the effect can

only be negative. But how much? And what kind?

Three different levels of material harm come from such obstruction:
· Fewer people use the program.
· None of the users can adapt or fix the program.
· Other developers cannot learn from the program, or base new

work on it.

Each level of material harm has a concomitant form of psychosocial

harm. This refers to the effect that people's decisions have on their

subsequent feelings, attitudes, and predispositions. These changes in

people's ways of thinking will then have a further effect on their

relationships with their fellow citizens, and can have material

consequences.

The three levels of material harm waste part of the value that the

program could contribute, but they cannot reduce it to zero. If they

waste nearly all the value of the program, then writing the program

harms society by at most the effort that went into writing the program.

Arguably a program that is profitable to sell must provide some net

direct material benefit.

However, taking account of the concomitant psychosocial harm,

there is no limit to the harm that proprietary software development

can do.

Obstructing Use of Programs

The first level of harm impedes the simple use of a program. A copy of

a program has nearly zero marginal cost (and you can pay this cost by

doing the work yourself), so in a free market, it would have nearly

zero price. A license fee is a significant disincentive to use the

24

program. If a widely useful program is proprietary, far fewer people

will use it.
It is easy to show that the total contribution of a program to society is

reduced by assigning an owner to it. Each potential user of the

program, faced with the need to pay to use it, may choose to pay, or

may forego use of the program. When a user chooses to pay, this is a

zero-sum transfer of wealth between two parties. But each time

someone chooses to forego use of the program, this harms that person

without benefiting anyone. The sum of negative numbers and zeros

must be negative.

But this does not reduce the amount of work it takes to develop the

program. As a result, the efficiency of the whole process, in delivered

user satisfaction per hour of work, is reduced.

This reflects a crucial difference between copies of programs and

cars, chairs, or sandwiches. There is no copying machine for material

objects outside of science fiction. But programs are easy to copy;

anyone can produce as many copies as are wanted, with very little

effort. This isn't true for material objects because matter is conserved:

each new copy has to be built from raw materials in the same way that

the first copy was built.

With material objects, a disincentive to use them makes sense,

because fewer objects bought means less raw material and work

needed to make them. It's true that there is usually also a startup cost, a

development cost, which is spread over the production run. But as

long as the marginal cost of production is significant, adding a share

of the development cost does not make a qualitative difference. And it

does not require restrictions on the freedom of ordinary users.

However, imposing a price on something that would otherwise be

free is a qualitative change. A centrally imposed fee for software
25

distribution becomes a powerful disincentive.

What's more, central production as now practiced is inefficient even

as a means of delivering copies of software. This system involves

enclosing physical disks or tapes in superfluous packaging, shipping

large numbers of them around the world, and storing them for sale.

This cost is presented as an expense of doing business; in truth, it is

part of the waste caused by having owners.

Damaging Social Cohesion

Suppose that both you and your neighbor would find it useful to run a

certain program. In ethical concern for your neighbor, you should feel

that proper handling of the situation will enable both of you to use it.

A proposal to permit only one of you to use the program, while

restraining the other, is divisive; neither you nor your neighbor

should find it acceptable.

Signing a typical software license agreement means betraying your

neighbor: “I promise to deprive my neighbor of this program so that I

can have a copy for myself.” People who make such choices feel

internal psychological pressure to justify them, by downgrading the

importance of helping one's neighbors—thus public spirit suffers.

This is psychosocial harm associated with the material harm of

discouraging use of the program.

Many users unconsciously recognize the wrong of refusing to share,

so they decide to ignore the licenses and laws, and share programs

anyway. But they often feel guilty about doing so. They know that

they must break the laws in order to be good neighbors, but they still

consider the laws authoritative, and they conclude that being a good

neighbor (which they are) is naughty or shameful. That is also a kind

of psychosocial harm, but one can escape it by deciding that these

26

licenses and laws have no moral force.
Programmers also suffer psychosocial harm knowing that many

users will not be allowed to use their work. This leads to an attitude of

cynicism or denial. A programmer may describe enthusiastically the

work that he finds technically exciting; then when asked, “Will I be

permitted to use it?”, his face falls, and he admits the answer is no. To

avoid feeling discouraged, he either ignores this fact most of the time

or adopts a cynical stance designed to minimize the importance of it.

Since the age of Reagan, the greatest scarcity in the United States is

not technical innovation, but rather the willingness to work together

for the public good. It makes no sense to encourage the former at the

expense of the latter.

Obstructing Custom Adaptation of Programs

The second level of material harm is the inability to adapt programs.

The ease of modification of software is one of its great advantages

over older technology. But most commercially available software

isn't available for modification, even after you buy it. It's available for

you to take it or leave it, as a black box—that is all.

A program that you can run consists of a series of numbers whose

meaning is obscure. No one, not even a good programmer, can easily

change the numbers to make the program do something different.

Programmers normally work with the “source code” for a program,

which is written in a programming language such as Fortran or C. It

uses names to designate the data being used and the parts of the

program, and it represents operations with symbols such as '+' for

addition and '-' for subtraction. It is designed to help programmers

read and change programs. Here is an example; a program to

calculate the distance between two points in a plane:

27

 float

 distance (p0, p1)

 struct point p0, p1;

 {

 float xdist = p1.x - p0.x;

 float ydist = p1.y - p0.y;

 return sqrt (xdist * xdist + ydist * ydist);

 }

Precisely what that source code means is not the point; the point is

that it looks like algebra, and a person who knows this programming

language will find it meaningful and clear. By contrast, here is same

program in executable form, on the computer I normally used when I

wrote this:

 1314258944 -232267772 -231844864 1634862

 1411907592 -231844736 2159150 1420296208

 -234880989 -234879837 -234879966 -232295424

 1644167167 -3214848 1090581031 1962942495

 572518958 -803143692 1314803317

Source code is useful (at least potentially) to every user of a program.

But most users are not allowed to have copies of the source code.

Usually the source code for a proprietary program is kept secret by

the owner, lest anybody else learn something from it. Users receive

only the files of incomprehensible numbers that the computer will

execute. This means that only the program's owner can change the

program.

A friend once told me of working as a programmer in a bank for about

six months, writing a program similar to something that was

28

commercially available. She believed that if she could have gotten

source code for that commercially available program, it could easily

have been adapted to their needs. The bank was willing to pay for this,

but was not permitted to—the source code was a secret. So she had to

do six months of make-work, work that counts in the GNP but was

actually waste.

The MIT Artificial Intelligence Lab (AI Lab) received a graphics

printer as a gift from Xerox around 1977. It was run by free software

to which we added many convenient features. For example, the

software would notify a user immediately on completion of a print

job. Whenever the printer had trouble, such as a paper jam or running

out of paper, the software would immediately notify all users who had

print jobs queued. These features facilitated smooth operation.

Later Xerox gave the AI Lab a newer, faster printer, one of the first

laser printers. It was driven by proprietary software that ran in a

separate dedicated computer, so we couldn't add any of our favorite

features. We could arrange to send a notification when a print job was

sent to the dedicated computer, but not when the job was actually

printed (and the delay was usually considerable). There was no way

to find out when the job was actually printed; you could only guess.

And no one was informed when there was a paper jam, so the printer

often went for an hour without being fixed.

The system programmers at the AI Lab were capable of fixing such

problems, probably as capable as the original authors of the program.

Xerox was uninterested in fixing them, and chose to prevent us, so we

were forced to accept the problems. They were never fixed.

Most good programmers have experienced this frustration. The bank

could afford to solve the problem by writing a new program from

29

scratch, but a typical user, no matter how skilled, can only give up.
Giving up causes psychosocial harm—to the spirit of self-reliance. It

is demoralizing to live in a house that you cannot rearrange to suit

your needs. It leads to resignation and discouragement, which can

spread to affect other aspects of one's life. People who feel this way

are unhappy and do not do good work.

Imagine what it would be like if recipes were hoarded in the same

fashion as software. You might say, “How do I change this recipe to

take out the salt?” and the great chef would respond, “How dare you

insult my recipe, the child of my brain and my palate, by trying to

tamper with it? You don't have the judgment to change my recipe and

make it work right!”

“But my doctor says I'm not supposed to eat salt! What can I do? Will

you take out the salt for me?”

“I would be glad to do that; my fee is only $50,000.” Since the owner

has a monopoly on changes, the fee tends to be large.

“However, right now I don't have time. I am busy with a commission

to design a new recipe for ship's biscuit for the Navy Department. I

might get around to you in about two years.”

Obstructing Software Development

The third level of material harm affects software development.

Software development used to be an evolutionary process, where a

person would take an existing program and rewrite parts of it for one

new feature, and then another person would rewrite parts to add

another feature; in some cases, this continued over a period of twenty

years. Meanwhile, parts of the program would be “cannibalized” to

form the beginnings of other programs.

The existence of owners prevents this kind of evolution, making it
30

necessary to start from scratch when developing a program. It also

prevents new practitioners from studying existing programs to learn

useful techniques or even how large programs can be structured.

Owners also obstruct education. I have met bright students in

computer science who have never seen the source code of a large

program. They may be good at writing small programs, but they can't

begin to learn the different skills of writing large ones if they can't see

how others have done it.

In any intellectual field, one can reach greater heights by standing on

the shoulders of others. But that is no longer generally allowed in the

software field—you can only stand on the shoulders of the other

people in your own company.

The associated psychosocial harm affects the spirit of scientific

cooperation, which used to be so strong that scientists would

cooperate even when their countries were at war. In this spirit,

Japanese oceanographers abandoning their lab on an island in the

Pacific carefully preserved their work for the invading U.S. Marines,

and left a note asking them to take good care of it.

Conflict for profit has destroyed what international conflict spared.

Nowadays scientists in many fields don't publish enough in their

papers to enable others to replicate the experiment. They publish only

enough to let readers marvel at how much they were able to do. This is

certainly true in computer science, where the source code for the

programs reported on is usually secret.

It Does Not Matter How Sharing Is Restricted

I have been discussing the effects of preventing people from copying,

changing, and building on a program. I have not specified how this

31

obstruction is carried out, because that doesn't affect the conclusion.

Whether it is done by copy protection, or copyright, or licenses, or

encryption, or ROM cards, or hardware serial numbers, if it succeeds

in preventing use, it does harm.

Users do consider some of these methods more obnoxious than

others. I suggest that the methods most hated are those that

accomplish their objective.

Software Should be Free

I have shown how ownership of a program—the power to restrict

changing or copying it—is obstructive. Its negative effects are

widespread and important. It follows that society shouldn't have

owners for programs.

Another way to understand this is that what society needs is free

software, and proprietary software is a poor substitute. Encouraging

the substitute is not a rational way to get what we need.

Vaclav Havel has advised us to “Work for something because it is

good, not just because it stands a chance to succeed.” A business

making proprietary software stands a chance of success in its own

narrow terms, but it is not what is good for society.

Why People Will Develop Software

If we eliminate copyright as a means of encouraging people to

develop software, at first less software will be developed, but that

software will be more useful. It is not clear whether the overall

delivered user satisfaction will be less; but if it is, or if we wish to

increase it anyway, there are other ways to encourage development,

just as there are ways besides toll booths to raise money for streets.

Before I talk about how that can be done, first I want to question how

32

much artificial encouragement is truly necessary.

Programming is Fun

There are some lines of work that few will enter except for money;

road construction, for example. There are other fields of study and art

in which there is little chance to become rich, which people enter for

their fascination or their perceived value to society. Examples include

mathematical logic, classical music, and archaeology; and political

organizing among working people. People compete, more sadly than

bitterly, for the few funded positions available, none of which is

funded very well.

They may even pay for the chance to work in the field, if they can

afford to.

Such a field can transform itself overnight if it begins to offer the

possibility of getting rich. When one worker gets rich, others demand

the same opportunity. Soon all may demand large sums of money for

doing what they used to do for pleasure. When another couple of

years go by, everyone connected with the field will deride the idea

that work would be done in the field without large financial returns.

They will advise social planners to ensure that these returns are

possible, prescribing special privileges, powers, and monopolies as

necessary to do so.

This change happened in the field of computer programming in the

1980s. In the 1970s, there were articles on “computer addiction”:

users were “onlining” and had hundred-dollar-a-week habits. It was

generally understood that people frequently loved programming

enough to break up their marriages.

Today, it is generally understood that no one would program except

for a high rate of pay. People have forgotten what they knew back
33

then. When it is true at a given time that most people will work in a

certain field only for high pay, it need not remain true. The dynamic of

change can run in reverse, if society provides an impetus. If we take

away the possibility of great wealth, then after a while, when the

people have readjusted their attitudes, they will once again be eager to

work in the field for the joy of accomplishment.

The question “How can we pay programmers?” becomes an easier

question when we realize that it's not a matter of paying them a

fortune. A mere living is easier to raise.

Funding Free Software

Institutions that pay programmers do not have to be software houses.

Many other institutions already exist that can do this.

Hardware manufacturers find it essential to support software

development even if they cannot control the use of the software. In

1970, much of their software was free because they did not consider

restricting it. Today, their increasing willingness to join consortiums

shows their realization that owning the software is not what is really

important for them.

Universities conduct many programming projects. Today they often

sell the results, but in the 1970s they did not. Is there any doubt that

universities would develop free software if they were not allowed to

sell software? These projects could be supported by the same

government contracts and grants that now support proprietary

software development.

It is common today for university researchers to get grants to develop

a system, develop it nearly to the point of completion and call that

“finished”, and then start companies where they really finish the

34

project and make it usable. Sometimes they declare the unfinished

version “free”; if they are thoroughly corrupt, they instead get an

exclusive license from the university. This is not a secret; it is openly

admitted by everyone concerned. Yet if the researchers were not

exposed to the temptation to do these things, they would still do their

research.

Programmers writing free software can make their living by selling

services related to the software. I have been hired to port the GNU C

compiler to new hardware, and to make user-interface extensions to

GNU Emacs. (I offer these improvements to the public once they are

done.) I also teach classes for which I am paid.

I am not alone in working this way; there is now a successful, growing

corporation which does no other kind of work. Several other

companies also provide commercial support for the free software of

the GNU system. This is the beginning of the independent software

support industry—an industry that could become quite large if free

software becomes prevalent. It provides users with an option

generally unavailable for proprietary software, except to the very

wealthy.

New institutions such as the Free Software Foundation can also fund

programmers. Most of the Foundation's funds come from users

buying tapes through the mail. The software on the tapes is free,

which means that every user has the freedom to copy it and change it,

but many nonetheless pay to get copies. (Recall that “free software”

refers to freedom, not to price.) Some users who already have a copy

order tapes as a way of making a contribution they feel we deserve.

The Foundation also receives sizable donations from computer

manufacturers.

35

The Free Software Foundation is a charity, and its income is spent on

hiring as many programmers as possible. If it had been set up as a

business, distributing the same free software to the public for the

same fee, it would now provide a very good living for its founder.

Because the Foundation is a charity, programmers often work for the

Foundation for half of what they could make elsewhere. They do this

because we are free of bureaucracy, and because they feel satisfaction

in knowing that their work will not be obstructed from use. Most of

all, they do it because programming is fun. In addition, volunteers

have written many useful programs for us. (Even technical writers

have begun to volunteer.)

This confirms that programming is among the most fascinating of all

fields, along with music and art. We don't have to fear that no one will

want to program.

What Do Users Owe to Developers?

There is a good reason for users of software to feel a moral obligation

to contribute to its support. Developers of free software are

contributing to the users' activities, and it is both fair and in the long-

term interest of the users to give them funds to continue.

However, this does not apply to proprietary software developers,

since obstructionism deserves a punishment rather than a reward.

We thus have a paradox: the developer of useful software is entitled to

the support of the users, but any attempt to turn this moral obligation

into a requirement destroys the basis for the obligation. A developer

can either deserve a reward or demand it, but not both.

I believe that an ethical developer faced with this paradox must act so

as to deserve the reward, but should also entreat the users for

36

voluntary donations. Eventually the users will learn to support

developers without coercion, just as they have learned to support

public radio and television stations.

What Is Software Productivity?

If software were free, there would still be programmers, but perhaps

fewer of them. Would this be bad for society?

Not necessarily. Today the advanced nations have fewer farmers than

in 1900, but we do not think this is bad for society, because the few

deliver more food to the consumers than the many used to do. We call

this improved productivity.

Free software would require far fewer programmers to satisfy the

demand, because of increased software productivity at all levels:

· Wider use of each program that is developed.

· The ability to adapt existing programs for customization instead

of starting from scratch.

· Better education of programmers.

· The elimination of duplicate development effort.

Those who object to cooperation claiming it would result in the

employment of fewer programmers are actually objecting to

increased productivity. Yet these people usually accept the widely

held belief that the software industry needs increased productivity.

How is this?

“Software productivity” can mean two different things: the overall

productivity of all software development, or the productivity of

individual projects. Overall productivity is what society would like to

improve, and the most straightforward way to do this is to eliminate

the artificial obstacles to cooperation which reduce it. But researchers

37

who study the field of “software productivity” focus only on the

second, limited, sense of the term, where improvement requires

difficult technological advances.

Is Competition Inevitable?

Is it inevitable that people will try to compete, to surpass their rivals in

society? Perhaps it is. But competition itself is not harmful; the

harmful thing is combat.

There are many ways to compete. Competition can consist of trying

to achieve ever more, to outdo what others have done. For example, in

the old days, there was competition among programming

wizards—competition for who could make the computer do the most

amazing thing, or for who could make the shortest or fastest program

for a given task. This kind of competition can benefit everyone, as

long as the spirit of good sportsmanship is maintained.

Constructive competition is enough competition to motivate people

to great efforts. A number of people are competing to be the first to

have visited all the countries on Earth; some even spend fortunes

trying to do this. But they do not bribe ship captains to strand their

rivals on desert islands. They are content to let the best person win.

Competition becomes combat when the competitors begin trying to

impede each other instead of advancing themselves—when “Let the

best person win” gives way to “Let me win, best or not.” Proprietary

software is harmful, not because it is a form of competition, but

because it is a form of combat among the citizens of our society.

Competition in business is not necessarily combat. For example,

when two grocery stores compete, their entire effort is to improve

their own operations, not to sabotage the rival. But this does not

demonstrate a special commitment to business ethics; rather, there is
38

little scope for combat in this line of business short of physical

violence. Not all areas of business share this characteristic.

Withholding information that could help everyone advance is a form

of combat.

Business ideology does not prepare people to resist the temptation to

combat the competition. Some forms of combat have been banned

with antitrust laws, truth in advertising laws, and so on, but rather

than generalizing this to a principled rejection of combat in general,

executives invent other forms of combat which are not specifically

prohibited. Society's resources are squandered on the economic

equivalent of factional civil war.

Conclusion

We like to think that our society encourages helping your neighbor;

but each time we reward someone for obstructionism, or admire them

for the wealth they have gained in this way, we are sending the

opposite message.

Software hoarding is one form of our general willingness to disregard

the welfare of society for personal gain. We can trace this disregard

from Ronald Reagan to Dick Cheney, from Exxon to Enron, from

failing banks to failing schools. We can measure it with the size of the

homeless population and the prison population. The antisocial spirit

feeds on itself, because the more we see that other people will not help

us, the more it seems futile to help them. Thus society decays into a

jungle.

If we don't want to live in a jungle, we must change our attitudes. We

must start sending the message that a good citizen is one who

cooperates when appropriate, not one who is successful at taking

from others. I hope that the free software movement will contribute to

39

this: at least in one area, we will replace the jungle with a more

efficient system which encourages and runs on voluntary

cooperation.

Footnotes

1. The word “free” in “free software” refers to freedom, not to

price; the price paid for a copy of a free program may be zero,

or small, or (rarely) quite large.

2. The issues of pollution and traffic congestion do not alter this

conclusion. If we wish to make driving more expensive to

discourage driving in general, it is disadvantageous to do this

using toll booths, which contribute to both pollution and

congestion. A tax on gasoline is much better. Likewise, a desire

to enhance safety by limiting maximum speed is not relevant; a

free-access road enhances the average speed by avoiding stops

and delays, for any given speed limit.

3. One might regard a particular computer program as a harmful

thing that should not be available at all, like the Lotus

Marketplace database of personal information, which was

withdrawn from sale due to public disapproval. Most of what I

say does not apply to this case, but it makes little sense to argue

for having an owner on the grounds that the owner will make

the program less available. The owner will not make it

completely unavailable, as one would wish in the case of a

program whose use is considered destructive.

* * *
Exercise :

 A) How propriety software are damaging our economy.

 B) How you can do the business by using free open source

40

41

software

 C) How the funding help is available to free software

 D) What do you mean by software productivity?

 E) How the philosophy of free software would benefit Indian

ecosystem?

42

 6. Free Software and Education

How Does Free Software Relate to Education?

Software freedom plays a fundamental role in education. Educational

institutions of all levels should use and teach Free Software because it

is the only software that allows them to accomplish their essential

missions: to disseminate human knowledge and to prepare students

to be good members of their community. The source code and the

methods of Free Software are part of human knowledge. On the

contrary, proprietary software is secret, restricted knowledge, which

is the opposite of the mission of educational institutions. Free

Software supports education, proprietary software forbids education.

Free Software is not just a technical question; it is an ethical, social,

and political question. It is a question of the human rights that the

users of software ought to have. Freedom and cooperation are

essential values of Free Software. The GNU System implements

these values and the principle of sharing, since sharing is good and

beneficial to human progress.

Why Educational Institutions Should Use and Teach Free

Software - by www.gnu.org

"Schools should teach their students to be citizens of a strong,

capable, independent and free society."

These are the main reasons why universities and schools of all levels

should use exclusively Free Software.

Sharing

Schools should teach the value of sharing by setting an example. Free

software supports education by allowing the sharing of knowledge

and tools:

· Knowledge. Many young students have a talent for

programing; they are fascinated with computers and eager to

learn how their systems work. With proprietary software, this

information is a secret so teachers have no way of making it

available to their students. But if it is Free Software, the teacher

can explain the basic subject and then hand out the source code

for the student to read and learn.

· Tools. Teachers can hand out to students copies of the

programs they use in the classroom so that they can use them at

home. With Free Software, copying is not only authorized, it is

encouraged.

Social Responsibility

Computing has become an essential part of everyday life. Digital

technology is transforming society very quickly, and schools have an

influence on the future of society. Their mission is to get students

ready to participate in a free digital society by teaching them the skills

to make it easy for them to take control of their own lives.

Software should not be under the power of a software developer who

unilaterally makes decisions that nobody else can change.

Educational institutions should not allow proprietary software

companies to impose their power on the rest of society and its future.

43

Independence

Schools have an ethical responsibility to teach strength, not

dependency on a single product or a specific powerful company.

Furthermore, by choosing to use Free Software, the school itself

gains independence from any commercial interests and it avoids

vendor lock-in.

· Proprietary software companies use schools and universities as

a springboard to reach users and thus impose their software on

society as a whole. They offer discounts, or even gratis copies

of their proprietary programs to educational institutions, so

that students will learn to use them and become dependent on

them. After these students graduate, neither they nor their

future employers will be offered discounted copies.

Essentially, what these companies are doing is they are

recruiting schools and universities into agents to lead people to

permanent lifelong dependency.

· Free software licenses do not expire, which means that once

Free Software is adopted, institutions remain independent

from the vendor. Moreover, Free Software licenses grant users

the rights not only to use the software as they wish, to copy it

and distribute it, but also to modify it in order to meet their own

needs. Therefore, if institutions eventually wish to implement a

particular function in a piece of software, they can engage the

services of any developer to accomplish the task,

independently from the original vendor.

Learning

When deciding where they will study, more and more students are

44

45

considering whether a university teaches computer science and

software development using Free Software. Free software means that

students are free to study how the programs work and to learn how to

adapt them for their own needs. Learning about Free Software also

helps in studying software development ethics and professional

practice.

Saving

This is an obvious advantage that will appeal immediately to many

school administrators, but it is a marginal benefit. The main point of

this aspect is that by being authorized to distribute copies of the

programs at little or no cost, schools can actually aid families facing

financial issues, thus promoting fairness and equal opportunities of

learning among students.

Quality

Stable, secure and easily installed Free Software solutions are

available for education already. In any case, excellence of

performance is a secondary benefit; the ultimate goal is freedom for

computer users.

* * *

 7. Why Schools Should Exclusively
 Use Free Software - by Richard Stallman

Educational activities, including schools of all

levels from kindergarten to university, have a

moral duty to teach only free software.

All computer users ought to insist on free

software: it gives users the freedom to control

their own computers—with proprietary

software, the program does what its owner or developer wants it to

do, not what the user wants it to do.

Free software also gives users the freedom to cooperate with each

other, to lead an upright life. These reasons apply to schools as they do

to everyone. However, the purpose of this article is to present the

additional reasons that apply specifically to education.

Free software can save schools money, but this is a secondary benefit.

Savings are possible because free software gives schools, like other

users, the freedom to copy and redistribute the software; the school

system can give a copy to every school, and each school can install

the program in all its computers, with no obligation to pay for doing

so.

46

This benefit is useful, but we firmly refuse to give it first place,

because it is shallow compared to the important ethical issues at

stake. Moving schools to free software is more than a way to make

education a little “better”: it is a matter of doing good education

instead of bad education. So let's consider the deeper issues.

Schools have a social mission: to teach students to be citizens of a

strong, capable, independent, cooperating and free society. They

should promote the use of free software just as they promote

conservation and voting. By teaching students free software, they can

graduate citizens ready to live in a free digital society. This will help

society as a whole escape from being dominated by

megacorporations.

In contrast, to teach a nonfree program is implanting dependence,

which goes counter to the schools' social mission. Schools should

never do this.

Why, after all, do some proprietary software developers offer gratis

copies(1) of their nonfree programs to schools? Because they want to

use the schools to implant dependence on their products, like tobacco

companies distributing gratis cigarettes to school children(2). They

will not give gratis copies to these students once they've graduated,

nor to the companies that they go to work for. Once you're dependent,

you're expected to pay, and future upgrades may be expensive.

Free software permits students to learn how software works. Some

students, natural-born programmers, on reaching their teens yearn to

learn everything there is to know about their computer and its

software. They are intensely curious to read the source code of the

programs that they use every day.

Proprietary software rejects their thirst for knowledge: it says, “The

47

knowledge you want is a secret—learning is forbidden!” Proprietary

software is the enemy of the spirit of education, so it should not be

tolerated in a school, except as an object for reverse engineering.

Free software encourages everyone to learn. The free software

community rejects the “priesthood of technology”, which keeps the

general public in ignorance of how technology works; we encourage

students of any age and situation to read the source code and learn as

much as they want to know.

Schools that use free software will enable gifted programming

students to advance. How do natural-born programmers learn to be

good programmers? They need to read and understand real programs

that people really use. You learn to write good, clear code by reading

lots of code and writing lots of code. Only free software permits this.

How do you learn to write code for large programs? You do that by

writing lots of changes in existing large programs. Free Software lets

you do this; proprietary software forbids this. Any school can offer its

students the chance to master the craft of programming, but only if it

is a free software school.

The deepest reason for using free software in schools is for moral

education. We expect schools to teach students basic facts and useful

skills, but that is only part of their job. The most fundamental task of

schools is to teach good citizenship, including the habit of helping

others. In the area of computing, this means teaching people to share

software. Schools, starting from nursery school, should tell their

students, “If you bring software to school, you must share it with the

other students. You must show the source code to the class, in case

someone wants to learn. Therefore bringing nonfree software to class

is not permitted, unless it is for reverse-engineering work.”

48

Of course, the school must practice what it preaches: it should bring

only free software to class (except objects for reverse-engineering),

and share copies including source code with the students so they can

copy it, take it home, and redistribute it further.
Teaching the students to use free software, and to participate in the

free software community, is a hands-on civics lesson. It also teaches

students the role model of public service rather than that of tycoons.

All levels of school should use free software.

If you have a relationship with a school —if you are a student, a

teacher, an employee, an administrator, a donor, or a parent— it's

your responsibility to campaign for the school to migrate to free

software. If a private request doesn't achieve the goal, raise the issue

publicly in those communities; that is the way to make more people

aware of the issue and find allies for the campaign.

* * *

Exercise : A) Find out the free or open source alternative of the most
common proprietary software we are in our daily life.

 B) Calculate the expenses which may our on each machine
after installing the most essential (common)
proprietary software and then multiply the amount
with no. of machines available in your school.

49

50

 8. THE GNU License

The GNU General Public License (GNU GPL or GPL) is a widely

used free software license, which guarantees end users the freedom to

run, study, share and modify the software. The license was originally

written by Richard Stallman of the Free Software Foundation (FSF)

for the GNU Project, and grants the recipients of a computer program

the rights of the Free Software Definition.

The GPL is a copyleft license, which means that derivative work can

only be distributed under the same license terms. This is in distinction

to permissive free software licenses, of which the BSD licenses and

the MIT License are widely used examples. GPL was the first

copyleft license for general use.

The GPL was written by Richard Stallman in 1989, for use with

programs released as part of the GNU project.

* * *

51

 9. The Open Source Philosophy

as mentioned on https://opensource.org

What is "Open Source" software?

Generally, Open Source software is software that can be freely

accessed, used, changed, and shared (in modified or unmodified

form) by anyone. Open source software is made by many people, and

distributed under licenses that comply with the Open Source

Definition.

The internationally recognized Open Source Definition provides ten

criteria that must be met for any software license, and the software

distributed under that license, to be labeled "Open Source software."

Only software licensed under an OSI-approved Open Source license

should be labeled "Open Source" software.

Using Open Source for Commercial Purpose

All Open Source software can be used for commercial purpose; the

Open Source Definition guarantees this. You can even sell Open

Source software.

However, note that commercial is not the same as proprietary. If you

receive software under an Open Source license, you can always use

that software for commercial purposes, but that doesn't always mean

you can place further restrictions on people who receive the software

from you. In particular, copyleft-style Open Source licenses require

that, in at least some cases, when you distribute the software, you

must do so under the same license you received it under.

52

 10. The Copyleft Theory

"Copyleft" refers to licenses that allow derivative works but require

them to use the same license as the original work. For example, if you

write some software and release it under the GNU General Public

License (a widely-used copyleft license), and then someone else

modifies that software and distributes their modified version, the

modified version must be licensed under the GNU GPL too —

including any new code written specifically to go into the modified

version.

Both the original and the new work are Open Source; the copyleft

license simply ensures that property is perpetuated to all downstream

derivatives. (There is at least one copyleft license, the Affero GPL,

that even requires you to offer the source code, under the AGPL, to

anyone to whom you make the software's functionality available as a

network service — however, most copyleft licenses activate their

share-and-share-alike requirement on distribution of a copy of the

software itself. You should read the license to understand its

requirements for source code distribution.)

Most copyleft licenses are Open Source, but not all Open Source

licenses are copyleft. When an Open Source license is not copyleft,

that means software released under that license can be used as part of

programs distributed under other licenses, including proprietary

(non-open-source) licenses.

 For example, the BSD license is a non-copyleft Open Source license.

Such licenses are usually called either "non-copyleft" or "permissive"

open source licenses Copyleft provisions apply only to actual

derivatives, that is, cases where an existing copylefted work was

modified. Merely distributing a copyleft work alongside a non-copyleft

work does not cause the latter to fall under the copyleft terms.

* * *

 11. List of Free / FOSS Software for
 Education Educational suites

· ATutor — a web-based Learning Content Management System

(LCMS)

· Chamilo — a web-based e-learning and content management

system

· Claroline — a collaborative Learning Management System

· DoceboLMS

· eFront — an icon-based learning management system

· FlightPath — academic advising software for universities

· GCompris

· Gnaural — Brainwave entrainment software

· IUP Portfolio

· ILIAS — a web-based learning management system (LMS)

· Moodle — a free and open-source learning management system

· OLAT — a web-based Learning Content Management System

· Omeka

· openSIS — a web-based Student Information and School

Management system

· Sakai Project — a web-based learning management system

· SWAD – a web-based learning management system

· Tux Paint — a paint application for 3–12 year olds

53

Geography

· KGeography

Learning support

 Main category: Free learning support software

Language

 · Kiten

· KVerbos

Typing
· KTouch

 · Tux Typing

Other educational programs

KEduca

GMIP

* * *

54

55

 12. Linux an ultimate hero

(Note : The below mentioned text is a note on Linux mentioned on the

official site https://www.linux.com/what-is-linux, Students are

requested to browse the site,in case they want more information on

Linux)

What is Linux?

From smartphones to cars, supercomputers

and home appliances, the Linux operating

system is everywhere.

Linux. It's been around since the mid '90s, and has since reached a

user-base that spans industries and continents. For those in the know,

you understand that Linux is actually everywhere.

 It's in your phones, in your cars, in your refrigerators, your Roku

devices. It runs most of the Internet, the supercomputers making

scientific breakthroughs, and the world\'s stock exchanges. But

before Linux became the platform to run desktops, servers, and

embedded systems across the globe, it was (and still is) one of the

most reliable, secure, and worry-free operating systems available.

For those not in the know, worry not – here is all the information you

need to get up to speed on the Linux platform.

What is Linux?
Just like Windows XP, Windows 7, Windows 8, and Mac OS X, Linux

is an operating system. An operating system is software that manages

all of the hardware resources associated with your desktop or laptop.

To put it simply – the operating system manages the communication

between your software and your hardware. Without the operating

system (often referred to as the “OS”), the software wouldn't

function.

The OS is comprised of a number of pieces:

· The Bootloader: The software that manages the boot process

of your computer. For most users, this will simply be a splash

screen that pops up and eventually goes away to boot into the

operating system.

· The kernel: This is the one piece of the whole that is actually

called “Linux”. The kernel is the core of the system and

manages the CPU, memory, and peripheral devices. The kernel

is the “lowest” level of the OS.

· Daemons: These are background services (printing, sound,

scheduling, etc) that either startup during boot, or after you log

into the desktop.

· The Shell: You've probably heard mention of the Linux

command line. This is the shell – a command process that

allows you to control the computer via commands typed into a

text interface. This is what, at one time, scared people away

from Linux the most (assuming they had to learn a seemingly

archaic command line structure to make Linux work). This is

no longer the case. With modern desktop Linux, there is no

56

need to ever touch the command line.

· Graphical Server: This is the sub-system that displays the

graphics on your monitor. It is commonly referred to as the X

server or just “X”.

· Desktop Environment: This is the piece of the puzzle that the

users actually interact with. There are many desktop

environments to choose from (Unity, GNOME, Cinnamon,

Enlightenment, KDE, XFCE, etc). Each desktop environment

includes built-in applications (such as file managers,

configuration tools, web browsers, games, etc).

· Applications: Desktop environments do not

offer the full array of apps. Just like Windows

and Mac, Linux offers thousands upon

thousands of high-quality software titles that

can be easily found and installed. Most

modern Linux distributions (more on this in a moment) include

App Store-like tools that centralize and simplify application

installation. For example: Ubuntu Linux has the Ubuntu

Software Center which allows you to quickly search among the

thousands of apps and install them from one centralized

location.

Why use Linux?

This is the one question that most people ask. Why

bother learning a completely different computing

environment, when the operating system that ships

with most desktops, laptops, and servers works just

fine? To answer that question, I would pose another question. Does

57

that operating system you're currently using really work “just fine”?

Or are you constantly battling viruses, malware, slowdowns, crashes,

costly repairs, and licensing fees?

If you struggle with the above, and want to free yourself from the

constant fear of losing data or having to take your computer in for the

“yearly clean up,” Linux might be the perfect platform for you. Linux

has evolved into one of the most reliable computer ecosystems on the

planet. Combine that reliability with zero cost of entry and you have

the perfect solution for a desktop platform.

That's right, zero cost of entry...as in free. You can

install Linux on as many computers as you like

without paying a cent for software or server

licensing (including costly Microsoft Client Access

License – CALs).

Let's take a look at the cost of a Linux server, in comparison to

Windows Server 2012. The price of the Windows Server 2012

software alone can run up to $1,200.00 USD. That doesn't include

CALs, and licenses for other software you may need to run (such as a

database, a web server, mail server, etc). With the Linux server...it's

all free and easy to install. In fact, installing a full blown web server

(that includes a database server), is just a few clicks or commands

away (take a look at “Easy LAMP Server Installation” to get an idea

how simple it can be).

If you're a system administrator, working

with Linux is a dream come true. No more

daily babysitting servers. In fact, Linux is as

close to “set it and forget it” as you will ever

find. And, on the off chance, one service on

58

the server requires restarting, re-configuring, upgrading, etc...most

likely the rest of the server won't be affected.

Be it the desktop or a server, if zero cost isn't enough to win you over –

what about having an operating system that will work, trouble free,

for as long as you use it? I've personally used Linux for nearly twenty

years (as a desktop and server platform) and have not once had an

issue with malware, viruses, or random computer slow-downs. It's

that stable. And server reboots? Only if the kernel is updated. It is not

out of the ordinary for a Linux server to go years without being

rebooted. That's stability and dependability.

Linux is also distributed under an open source license. Open source

follows the following key philosophies:

· The freedom to run the program, for any purpose.

· The freedom to study how the program works, and change it to

make it do what you wish.

· The freedom to redistribute copies so you can help your

neighbor.

· The freedom to distribute copies of your modified versions to

others.

· The above are crucial to understanding the community that

comes together to create the Linux platform. It is, without a

doubt, an operating system that is “by the people, for the

people”. These philosophies are also one of the main reasons a

large percentage of people use Linux. It's about freedom and

freedom of choice.

What is a “distribution?"

Linux has a number of different versions to suit nearly any type of

59

user. From new users to hard-core users, you'll find a “flavor” of

Linux to match your needs. These versions are called distributions

(or, in the short form, “distros.”) Nearly every distribution of Linux

can be downloaded for free, burned onto disk (or USB thumb drive),

and installed (on as many machines as you like).

The most popular Linux distributions are:
· Ubuntu Linux
· Linux Mint
· Arch Linux
· Deepin
· Fedora
· Debian
· openSUSE.

Each distribution has a different take on the desktop. Some opt for

very modern user interfaces (such as Ubuntu's Unity, above, and

Deepin's Deepin Desktop), whereas others stick with a more

traditional desktop environment (openSUSE uses KDE).

More Resources

If you're looking for one of the most reliable, secure, and dependable

platforms for both the desktop and the server, look no further than one

of the many Linux distributions. With Linux you can assure your

desktops will be free of trouble, your servers up, and your support

requests at a minimum.

If you're looking for more resources to help guide you through your

lifetime with Linux, check out the following resources:

· Linux.com: Everything you need to know about Linux (news,

how-tos, answers, forums, and more)
· Linux.org: Everything about the Linux kernel (with plenty of

beginner, intermediate, and advanced tutorials)
· Howtoforge: Linux tutorials

60

· Linux Documentation Project: Plenty of documentation (some

may be out of date)
· Linux Knowledge Base and Tutorial: Plenty of tutorials.

- - S o u r c e C u r t s y - T h e L i n u x F o u n d a t i o n -

https://www.linux.com/what-is-linux

The Wikipedia List of Linux adopters

Wikipedia shares a huge list of Linux adopters worldwide out of them

some prominent adopters are as follows.
Asia

The People's Republic of China

exclusively uses Linux as the

operating system for its Loongson

processor family, with the aim of

technology independence.

Kylin, used by People's Liberation

Army in The People's Republic of China. The first version used

FreeBSD, but since release 3.0, it employs Linux.

State owned Industrial and Commercial Bank of China (ICBC) is

installing Linux in all of its 20,000 retail branches as the basis for its

web server and a new terminal platform. (2005)

The Government of Kerala, India, announced its official support for

free/open-source software in its State IT Policy of 2001, which was

formulated after the first-ever free software conference in India,

"Freedom First!", held in July 2001 in Trivandrum, the capital of

Kerala, where Richard Stallman inaugurated the Free Software

61

Foundation of India. Since then, Kerala's IT Policy has been

significantly influenced by FOSS, with several major initiatives such

as IT@School Project, possibly the largest single-purpose

deployment of Linux in the world, and leading to the formation of the

International Centre for Free and Open Source Software (ICFOSS) in

2009.

In March 2014, with the end of support for Windows XP, the

Government of Tamil Nadu has advised all its departments to install

BOSS Linux (Bharat Operating System Solutions).

USA

In July 2001,the White House

started switching their web

servers to an operating system

based on Red Hat Linux and

us ing the Apache HTTP

Server.The installation was

completed in February 2009.In

October 2009, the White House servers adopted Drupal, an open

source content management system software distribution.

The United States Department of Defense uses Linux - "the U.S.

Army is “the” single largest install base for Red Hat Linux] and the

US Navy nuclear submarine fleet runs on Linux,including their sonar

systems.

In June 2012, the US Navy signed a US$27,883,883 contract with

Raytheon to install Linux ground control software for its fleet of

vertical take-off and landing (VTOL) Northrup-Grumman MQ8B

Fire Scout drones. The contract involves Naval Air Station Patuxent

62

River, Maryland, which has already spent $5,175,075 in preparation

for the Linux systems.

In April 2006, the US Federal Aviation Administration announced

that it had completed a migration to Red Hat Enterprise Linux in one

third of the scheduled time and about 15 million dollars under budget.

The switch saved a further $15 million in datacenter operating costs.
The US National Nuclear Security Administration operates the

world's tenth fastest supercomputer, the IBM Roadrunner, which

uses Red Hat Enterprise Linux along with Fedora as its operating

systems.

The city government of Largo, Florida, USA uses Linux and has won

international recognition for their implementation, indicating that it

provides "extensive savings over more traditional alternatives in city-

wide applications."

U.K.

In 2013, Westcliff High School for Girls in

the United Kingdom successfully moved

from Windows to OpenSUSE Linux.
Orwell High School, in Felixstowe,

England, school with about 1,000 students,

has switched to Linux. The school has just

received Specialist School for Technology

status through a government initiative.

Switzerland

All primary and secondary public schools in the Swiss Canton of

Geneva, have switched to using Ubuntu for the PCs used by teachers

and students in 2013-14. The switch has been completed by all of the

63

170 primary public schools and over 2,000 computers.

Americas

Brazil has 35 million students in over 50,000 schools using 523,400

computer stations all running Linux.

22,000 students in the US state of Indiana had access to Linux

Workstations at their high schools in 2006.

In 2009, Venezuela's Ministry of Education began a project called

Canaima-educativo, to provide all students in public schools with

"Canaimita" laptop computers with the Canaima Debian-based

Linux distribution pre-installed, as well as with open source

educational content

India

· The Indian government's tablet

computer initiative for student use

employs Linux as the operating system

as part of its drive to produce a tablet

PC for under 1,500 rupees (US$35).

· The Indian state of Tamil Nadu plans to

distribute 100,000 Linux laptops to its students.

· Government officials of Kerala, India announced they will use

only free software, running on the Linux platform, for

computer education, starting with the 2,650 government and

government-aided high schools.

64

65

· The Indian state of Tamil Nadu has issued a directive to local

government departments asking them to switch over to open

source software, in the wake of Microsoft's decision to end

support for Windows XP in April 2014

Note : Full list can be referred at Wikipedia under linux Adopters

page.

* * *

66

 13. Bharat Operating System Solutions

B h a r a t O p e r a t i n g S y s t e m

Solutions (BOSS Linux) is a free

and open source Linux distribution

developed by the National

Resource Centre for Free/Open

Source Software (NRCFOSS) of India. The latest stable release,

version 6.0, was released in March 2015.

This software package has been described as "India's own PC

operating system" and "the most meaningful product to come out of

the Indian software industry in decades — and let's recognise it, this

is work that a government department had to do." The software has

also been endorsed by the Government of India for adoption and

implementation on a national scale. It was developed at Centre for

Development of Advanced Computing (CDAC), Chennai INDIA.

BOSS GNU/Linux is an "LSB certified" Linux distribution: the

software has been certified by the Linux Foundation for compliance

with the Linux Standard Base standard.BOSS GNU/Linux is derived

from Debian GNU/Linux.

BOSS (Bharat Operating System Solutions) GNU/Linux distribution

developed by C-DAC (Centre for Development of Advanced

Computing) derived from Debian for enhancing the use of Free/

Open source software throughout India. BOSSGNU/Linux – a key

deliverable of NRCFOSS has upgraded from entry-level server to

advanced server

Official Website : https://www.bosslinux.in/
(Content Source : Wikipedia and Bosslinux)

* * *

Project: Install the boss linux operating system on your machine
under the supervision of computer teacher compare the feature of
BOSS linux with other proprietary operating system and write down
your observations.

67

 14. Apache Openoffice :
 A free office publishing tool for all

Apache OpenOffice is the leading

open-source office software suite for

word processing, spreadsheets,

presentations, graphics, databases

and more. It is available in many

languages and works on all common

computers. It stores all your data in

an international open standard

format and can also read and write files from other common office

software packages. It can be downloaded and used completely free of

charge for any purpose

Some super exciting advantages of Apache OpenOffice

Great software

Apache OpenOffice is the result of over twenty years' software

engineering. Designed from the start as a single piece of software, it

has a consistency other products cannot match. A completely open

development process means that anyone can report bugs, request new

features, or enhance the software. The result: Apache OpenOffice

does everything you want your office software to do, the way you

want it to.

Easy to use

Apache OpenOffice is easy to learn, and if you're already using

another office software package, you'll take to OpenOffice straight
68

69

away. Our world-wide native-language community means that

OpenOffice is probably available and supported in your own

language. And if you already have files from another office package -

OpenOffice will probably read them with no difficulty.

and it's free

Best of all, Apache OpenOffice can be downloaded and used entirely

free of any license fees. Like all Apache Software Foundation

software, Apache OpenOffice is free to use. Apache OpenOffice is

released under the Apache 2.0 License. This means you may use it for

any purpose - domestic, commercial, educational, public

administration. You may install it on as many computers as you like.

You may make copies and give them away to family, friends,

students, employees - anyone you like.

Why Apache OpenOffice: Education

Education establishments of all levels (primary, secondary, college,

university...) find Apache OpenOffice meets the needs of both

teachers and students. The flexible word processor, powerful

spreadsheet, dynamic graphics, database access and more meet all

requirements for an office software package.

With an open-source license, OpenOffice can be freely used and

distributed with no license worries.

· For pupils and students
· Apache OpenOffice forms an ideal teaching platform for

core computer literacy skills, without tying students to

commercial products. The free software license means

students can be given copies of software to use at home -

perfectly legally - a useful 'added value'. For IT students,

70

OpenOffice's component based software is also an ideal

platform for developing IT skills and understanding real-life

software engineering.
· For teachers and academics
· Apache OpenOffice is also an ideal platform for creating

teaching materials and managing administrative tasks. For

example, the Writer word processor is easy to use for simple

memos, but also powerful enough to cope with complex

dissertations. For IT staff, the open-source software license

means an end to license compliance worries and the threat of

software audits. OpenOffice is developed, translated, and

supported by an international community linked by the

internet, opening exciting possibilities for school projects.
· Open for all
· Apache OpenOffice is a leading international force in the

movement for digital inclusion - making software of the

highest quality available to all, regardless of income.

OpenOffice is available in a wide variety of languages, and

we actively encourage local teams to produce versions for

local languages. We develop software on an open-source

process - the computing equivalent of peer-reviewed

publishing - creating software of the highest quality.

(Content Source :

https://www.openoffice.org/why/why_edu.html , Please visit

the website for more information.)

* * *

Project: Install Apache open office in a machine under the

supervision of your computer teacher compare the features of open

office with other office publishing tools and make a note.

R

Entrepreneurship
and Small Business

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73

